Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms
نویسندگان
چکیده
Decomposition of organic matter is an important ecosystem process governed in part by bacteria. The process of decomposition is expected to benefit from interspecific bacterial interactions such as resource partitioning and facilitation. However, the relative importance of resource niche breadth (metabolic diversity) and resource niche overlap (functional redundancy) on decomposition and the temporal stability of ecosystem processes received little scientific attention. Therefore, this study aims to evaluate the effect of an increase in bacterial community resemblance on both decomposition and the stability of bacterial metabolism in aquatic sediments. To this end, we performed laboratory microcosm experiments in which we examined the influence of bacterial consortia differing in number and composition of species on bacterial activity (Electron Transport System Activity, ETSA), dissolved organic carbon production and wavelet transformed measurements of redox potential (Eh). Single substrate affinities of the individual bacterial species were determined in order to calculate the metabolic diversity of the microbial community. Results presented here indicate that bacterial activity and organic matter decomposition increase with widening of the resource niche breadth, and that metabolic stability increases with increasing overlap in bacterial resource niches, hinting that resource niche overlap can promote the stability of bacterial community metabolism.
منابع مشابه
Community Niche Predicts the Functioning
Predicting biodiversity effects on ecosystem functioning requires adequate evaluation of the mechanisms explaining why more diverse systems could perform better than less diverse ones. In this context, tackling functional diversity has become an important issue. Even though the aggregation of species into functional groups supposes niche differences among groups, the concept of niche has not be...
متن کاملTrophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health
Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial co...
متن کاملDisturbance Promotes Non-Indigenous Bacterial Invasion in Soil Microcosms: Analysis of the Roles of Resource Availability and Community Structure
BACKGROUND Invasion-biology is largely based on non-experimental observation of larger organisms. Here, we apply an experimental approach to the subject. By using microbial-based microcosm-experiments, invasion-biology can be placed on firmer experimental, and hence, less anecdotal ground. A better understanding of the mechanisms that govern invasion-success of bacteria in soil communities will...
متن کاملSoil Communities Promote Temporal Stability and Species Asynchrony in Experimental Grassland Communities
BACKGROUND Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities, yet little is known about whether soil communities also play a role in stabilizing the productivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015